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1. Introduction

Parallel processing has made iterative methods an attractive alternative for
solving large systems of initial value problems. Iterative methods for initial
value problems have a history of more than a century, and in the works of
Picard (1893) and Lindelof (1894) they were given a firm theoretical basis.
In particular, the superlinear convergence on finite intervals is included in
Lindelof (1894).

In the early 1980s waveform relaxation (WR) was introduced for the simula-
tion of electrical networks, by Lelarasmee, Ruehli and Sangiovanni-Vincentelli
(1982). The methodology has been used in several application areas and has
been extended to time-dependent PDEs. There are even books available:
White and Sangiovanni-Vincentelli (1987) and Vandewalle (1993).

In this survey we shall only consider systems of ODEs, with some remarks
on differential algebraic equations.

Practical problems are usually nonlinear, but it has been our working hy-
pothesis that studying the linear case carefully, specifically introducing a clear
notation and suitable concepts, might be what users really need. In applying
the ideas to particular problems, including nonlinear mappings, it is often
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relatively easy to make intelligent guesses, if one has a good understanding of
the nonlinear problem at hand and of the behaviour of the method on linear
problems. On papers dealing with strongly nonlinear problems we mention
Nevanlinna and Odeh (1987), partly because it was Farouk Odeh who intro-
duced the second author to waveform relaxation in 1983.

The iterative method has many names. To call it waveform relaxation is
natural when the application area is electronics. To call it Picard-Lindelof
iteration is historically motivated, although 'block Picard-Lindelof iteration'
would perhaps be more accurate, if cumbersome. The names Picard and
Lindelof also occur in the analysis of the iteration: our convergence theory
on finite windows is based on the theory of entire functions, to which both
Picard and Lindelof made important contributions.

We shall not discuss implementation issues at all, not because they are
unimportant, but because they are well described in the literature. On lin-
ear PDEs we refer to Lubich and Ostermann (1987) and Vandewalle (1992),
mentioning that a combination of multigrid in space and waveform relaxation
in time is fast and parallelizes reasonably well.

2. Finite windows

2.1. Basic estimates

Let A be a constant d by d complex matrix. We want to solve the initial
value problem

x + Ax = f, x(0) = x0, (2.1)

where the forcing function / generally depends on time t. The matrix A is
decomposed as A = M — N, where M would typically contain the diagonal
blocks of A, and iV the off-diagonal couplings. We consider the iteration

xk + Mxk = Nx*-1 + / , xk(0) = x0. (2.2)

If nothing better is available, one can take x°(t) = XQ. In practice, equa-
tion (2.2) would be solved by high-quality software, within a (perhaps k-
dependent) tolerance. Here we assume it to be solved exactly.

Introducing the following iteration operator

Ku{t):= ! e~{t-s)MNu(s) ds (2.3)
Jo

we can write (2.2) in the form

xk = JCxk-1+g, (2.4)

where

g(t) := e'tNx0 + / ' e"(*-a)M f(s) da.
Jo

(2.5)
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In what follows we shall assume that / is defined for all t > 0 and is locally
in L\, that is

\f(t)\dt <oo for all T < oo. (2.6)

So, we in fact replace (2.1) by the fixed-point problem

x = ICx + g, (2.7)

which then has a unique solution within continuous functions on [0, oo).

Proposition 1 Let / be absolutely integrable on bounded subsets of [0, oo),
and let XQ be given. Then there exists exactly one continuous solution x on
[0, oo) satisfying (2.7). In addition, x is absolutely continuous and satisfies
(2.1) almost everywhere.

Proof. To prove a result like this, one only has to show that (1 — /C)"1 is
a bounded operator in C[0, T] for all T. This is included in the estimates of
the growth of the resolvent in Proposition 2. That x is absolutely continuous
follows by differentiation. •

We shall use | • | to denote the Euclidean norm, and its induced matrix
norm, throughout the paper. In C[0, T] we shall then use the uniform norm

\x\T := sup |x(i)|. (2.8)
o<t<r

We shall also use | • | r to denote the induced operator norm

\K-\T '•= sup : )CX\T-
|X|T=1

Theorem 1 For k > 1, we have the bound

«T*- (2-9)
Proof. The iterates Kk are integral operators whose kernels are A;-fold con-
volutions of e~sMN satisfying

\(e-sMN)*k(t)\ < e^'liVl^f ^ . . (2.10)
(fc-1)!

In fact, (2.10) is trivial for A; = 1. For k > 1 we have

Kku{t)= / e-(t-s'MNICk-lu(s) ds, (2.11)
Jo

and from K,k~xu(t) — (e~sMiV)*(fc~1^ * u(t) we obtain the induction step
needed to conclude (2.10). Then (2.9) follows from (2.10) as

|£fc | r< f \(e-sMN)*k(t)\dt. (2.12)
Jo

•
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To obtain an explicit formula for the resolvent operator

consider the following problem for A ^ 0:

Xu-)Cu = g. (2.13)

Assuming g is smooth, differentiate (2.13) to obtain

u + (M N)u = —(g + Mg). (2-14)

Thus the only solution of (2.13) is given by

u(t) = R(X, K)g{t) = ~g(t) + i /" e^-^-^Ngis) ds. (2.15)
A Ac Jo

Proposition 2 The resolvent R(X, K) mapping g to u is given by (2.15) for
A / 0 and it satisfies

| D / \ y\\ -r' _i oT\M—xN\ \\T\T In i c\
\ilyA, /\-)\T 5: TTT T" . . , ? 6

 A |JV 11 . yZ.LO)

Proof. For smooth g, (2.16) follows in the same way as (2.9). As (2.15) only
deals with values of g, the bound (2.16) holds as such for all g G C[0,T]. •

2.2. Quasinilpotency, order and type

Bounded operators with spectrum equalling the origin are called quasinilpo-
tent. Their resolvents are entire functions in l/A whose growth can be used
to bound the powers of the operators. From (2.16) we see that R(X,K.) is
an entire function in l/A and that it essentially grows like exp(T|JV|/|A|) as
A —> 0. This means that R(X, K.) is of at most order 1, and if the order is 1,
then the type satisfies r < T|iV|. These concepts are important because the
growth of the resolvent as A —> 0 and the decay of the powers are intimately
related.

Hadamard (1893) used the maximum modulus

M(r,f) := sup \f(z)\ (2.17)

\z\=r

of an entire function / to define the order

log log M(r, f)
u> := lim sup -2—2 LliZ. 2.18)

r^oo log r
In our case R(X, /C) is an operator valued entire function in l/A and likewise
we set, following Miekkala and Nevanlinna (1992, page 207),

loglog(sup|A|=r|.R(A,/C)|:r)
w:=hmsup ——-, . (2-19)

r-+0 log j:
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In general LJ could be any nonnegative number, but it follows immediately
from (2.16) that 0 < u < 1. In Miekkala and Nevanlinna (1992) we proved
that OJ must be a rational number with denominator not exceeding the dimen-
sion d of the vectors. Its value depends on the 'graph properties' of M and
N only, and in particular is independent of the window size T.

By definition, the order u> is an asymptotic concept. Together with the
order, one often talks about the type r of an entire function. This is also an
asymptotic concept, which here takes the following form.

If R(X, K.) is of positive order u> in l/A then we say that it is of type r
where

r :=limsupra'log(sup \R(\, 1C)\T). (2.20)
r^O \\\=r

While the order u is independent of T, the type is of the form r = cT, where
c is a positive constant.

Thus, if R(X, /C) is of order u > 0 and type cT, then

sup \R(\, K)\T ~ ecT/r", as r -> 0, (2.21)
|A|=r

and, in particular, we have for any e > 0 a constant C such that

^ (2.22)
\x\

holds for all A 7̂  0. To see how the growth of the resolvent is connected with
the decay of the powers of the operator we state the following result.

Theorem 2 Let A be a bounded linear operator on a Banach space. If
R(X, A) is entire in l/A and satisfies

sup \\R(X,A)\\ <-eT'r" (2.23)
|A|=r r

for all r > 0, then

\\Ak\\<C(™)k/», k = 1,2,3,.. . . (2.24)

Conversely, if (2.24) holds, then for 0 < a < 1/2 and r > 0 we have

sup ||#(A,.4)|| < -(1 + —Cue^^T^u). (2.25)
|A|=r r a

Proof. To obtain (2.24) from (2.23) write

An = —l XnR{X,A)dX (2.26)

and substitute ru = ^ . The reverse direction is also standard in spirit but
the actual constants needed in (2.25) require some care. Here we refer to the
proof of Theorem 5.3.4 in Nevanlinna (1993). •
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2.3. Characteristic polynomial and computation of order and type

As the iteration operator is given by convolution with a matrix valued kernel,
it is possible to analyse the growth properties of its resolvent using the Laplace
transform.

Consider u = Kg where, say, \g{t)\ < Ceat for some positive constants C
and a. Taking the Laplace transform we obtain

u(z) = (z + M)-1Ng(z) (2.27)

and in particular u is analytic for sufficiently large Kez. Here (z + M)~lN
is the symbol of K, denoted by K{z). Analogously, the resolvent operator
R(X, K) has the symbol

\[\ + (Z + M-\N)-1\N\. (2.28)
A A A

Definition 1 We shall call

P(z,\) :=det(z + M-\N) (2.29)
A A

the characteristic polynomial of the iteration operator K.

In Section 3 we shall see how the zeros of P determine the spectrum of the
operator K when considered on the infinite time interval [0, oo): one looks at
the supremum of all roots |A| when z travels in a right half plane. Here the
properties of K. on the finite interval [0, T] are explained in terms of growth
of \z\ as A decays to zero.

Expanding the determinant yields the following result.

Proposition 3 We have

d
1£i, (2.30)

0

where qj is a polynomial of degree at most d — j and qj = 1.

The equation P(z(l/\), I/A) = 0 determines an algebraic function z = z(l/X)
which is (/-valued. We need to study the behaviour of z(l/A) as A —•+ 0.

Let Zj denote the branches of z. If Zj is not independent of A we define u>j

by

Zj(-) = Cj(-)us + <>{{-)"') as A -> 0 (2.31)

(with Cj ^ 0). If Zj is independent of A then we define uij = 0. Further we
set u> := max u>j.

Lemma 1

~k
£ {-r : k, m integers, 0 < m < k < d, k ^ 0} (2.32)
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Proof. The UjS are computed from the Newton diagram, which is explained
in Section 2.5. Theorem 7 implies the claim. •

We can show that UJ is the order of the iteration operator JC. Consider u> > 0.
Let c := max \CJ\ where j runs over those indices for which u>j = to. Then we
can formulate our result as follows.

Theorem 3 The iteration operator /C of (2.3) is in C[0, T] of order u = ^
with some integers 0 < m < n < d, independently of T. If u> > 0 then there
exists a positive c (c = max \CJ\ as above) such that for all T the type is r =
cT. If u = 0 then the operator is nilpotent with index n < d, independently
of T. Furthermore, K is nilpotent if and only if the characteristic polynomial
P is independent of A.

Proof. This is Theorem 4.6 in Miekkala and Nevanlinna (1992).

Since u> can take only a finite number of rational values for a <i-dimensional
problem, it should not be surprising that u> depends on graph properties of
M and iV, but not on the values of their elements. This topic is discussed
further in Section 2.5.

For u> < 1 we have the following characterization.

Theorem 4 R(X, K) is of the order u < 1 in C[0, T] if and only if N is
nilpotent.

Proof. This is included in Section 2.5. •

Finally, if M and N commute, the analysis of convergence is easy.

Theorem 5 If M and ./V commute, then either iV is nilpotent and then K
is nilpotent too, or the order LO = 1 and the type r = p(N)T.

Proof. For z $ a(—M), we have

K(z)k = (z k k

which gives

On the other hand, from

Nk = (z + M)kK{z)k

we obtain

and thus

P{K{Z)) =
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as 2 -» oo. The claim follows; see, for example, the proof of Theorem 6,
equation (2.37). •

2.4- Norm estimates

While the order and type are asymptotic concepts relating the decay of \Kn\i
to the behaviour of Zj = Zj(l/X) as A —• 0, it is also possible to relate \Kn\x
to the decay of the symbol as Kez —* oo. Results of this nature are given in
Nevanlinna (19896), and here we present the following basic version.

As in the proof of Theorem 1 of Section 2.1 the claim takes a somewhat
better form if formulated for the iterated kernels (e~sMN)*k(t) pointwise in
t rather than for the operator norm.

Let m, k be positive integers with m > k. Consider an estimate of the
form

/ r>4.\m—\

\(e-sMN)*k(t))\ < Be^) ' .,, for t > 0. (2.33)

Since K(z)k is the Laplace transform of (e~sMN)*k we have

/•o

\K(Z)k\<B
Jo

for( m - 1 ) ! R e z - 7
(2.34)

Thus, an estimate for the iterated kernel implies an estimate for the power of
the symbol. The nontrivial fact is that the reverse conclusion also holds.

Theorem 6 Suppose that there are positive integers k and m and positive
constants B and 7 such that (2.34) holds. Then, for all j = 1, 2, . . . , we have

^y ( )
m jm

Proof. Theorem 2.4.1. in Nevanlinna (19896) is slightly more general but
formulated for the iterated kernels. Integrating the kernel estimate gives (2.35)
but for a factor of 2. This can be dropped because Spijker (1991) has since
proved a sharp version of a lemma by LeVeque and Trefethen. •

Just for comparison, write u := k/m. Then for n = jk, j = 1, 2, . . . (2.35)
reads

|/Cn|r < dwe^i^^-T^, (2.36)
ffv

which should be compared with (2.24) and with Theorem 3.
To make this connection explicit observe that (2.31) implies

(2.37)
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as z —> oo. In fact, since

X-K(z) = \(z + M)-l{z + M -\N), (2.38)
A

the eigenvalues of K{z) are obtained from solving P(z, I/A) = 0 and (2.37)
follows by 'inverting' (2.31). Thus (2.34) can be viewed as a 'norm' version
of (2.37), with k/m — u> and B > c.

2.5. Computing order from the graph of A

It was explained in Section 2.3 that the order to of the iteration operator JC
can be computed by solving z = z(X) from the characteristic polynomial
P(z, j) = 0 near A = 0. The different branches are of the form (2.31) and
the order u is then the largest u>j in (2.31). Before finding these solutions we
need some background connecting graphs to matrices.

Let G(B) be the directed graph associated with a d x d-matrix B. G(B)
contains d vertices V{. Each nonzero element Bij of B corresponds to an
edge of G{B) with weight Bij directed from Vj to V{. By a circuit of G(B)
we mean a subgraph of G(B) which consists of one or more nonintersecting
loops. A circuit is denoted by Cj and its length (or number of edges) by l(Cj).
Further, the product of the weights of the edges is called the weight of the
circuit and is denoted by w(Cj, B). The second argument refers to Cj being a
circuit in G(B). Finally, j e v means the number of components of even length
in the circuit Cj.

The coefficients 6, in the following expansion of the determinant by diagonal
elements

det(zl + B) = zd + hzd-x + ... + bd (2.39)

can be linked to G(B) by noticing first that each bi is a sum of all principal
minors of order i in det(B). From the definition of the determinant one can
then show that these sums have the following graph interpretation (Chen 1976,
Theorem 3.1):

(-lYeMCj,B), i = l,...,d, (2.40)

where the sum is taken over all circuits of length i in the digraph of B.
Now back to solving for z(X) from P(z, I/A) = 0, or rather from p(A, z) = 0,

where

p(X, z) = XdP(z, j ) = det(zA7 + AM - N). (2.41)
A

Now

r=0
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where each pr is a polynomial in A. To compute the solution

z = ciA£l + c2A
£2 + • • •, ex < £2 < • • •, (2.42)

near A = 0, we use the Newton diagram; see, for instance, Vainberg and
Trenogin (1974).

For the diagram one needs to determine the smallest power of A occurring
in pr(X), provided pr(A) ^ 0. If it is denoted by sr, then the Newton diagram
consists of points {(r, sr) : r = 0 , . . . , d} and line segments between the points
such that all points are either above or on the line segments. The slopes of the
line segments then give the smallest exponent in the expansion (2.42) in such
a way that descending line segments correspond to positive £i, ascending
segments to negative E\ and horizontal segments to e\ = 0; for details see
Vainberg and Trenogin (1974).

Expanding the determinant in (2.41) by diagonal elements, and using (2.40),
results in

-N) = 0. (2.43)

Each weight w(Cj,XM — N) is a polynomial in A, since the weights of the
edges contained in circuit Cj are now of the form \My — Nij. To draw the
Newton diagram we need to know the smallest power of A occurring in the
coefficient polynomial of each zd~k.

©:
a)

Fig. 1.

Example 1 Let the graph of Figure la) represent the matrix A decomposed
into M — N. G{A) contains four different circuits. Three of them should be
obvious, the fourth contains the two small loops as its components. Consider
the circuit C\ of G(A) in Figure lb). The weight of C\ becomes

w(d,XM-N) =

(AM2 i - iV21)(AM42 - 7V42)(AM34 - iV34)(AMi3 - Ni3). (2.44)

The smallest power of A in this polynomial clearly depends on how many
elements Nij vanish.

The following definition is useful.
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Definition 2 Let rrij be the number of nonzero elements of M in the weight
u>(Cj, M — N) of the circuit Cj. Similarly, let rij be the number of nonzero
elements of N belonging to circuit Cj.

Clearly 0 < rrij, rij < l(Cj) and l(Cj) < rrij + rij < 21 (Cj).
The lowest order of A in the polynomial w(Cj, \M — N) is l(Cj) — rij (and

the highest order rrij). Let us denote n(k) := max{nj : l(Cj) = k}. If no
cancellation of terms occurs, then the coefficient of zd~k in (2.43) is a multiple
of the polynomial

This means that the d + 1 points in the Newton diagram of (2.43) are

( d , d ) ( f o r z d ) a n d ( d - k , d - n ( k ) ) , \ < k < d ( f o r z d ~ k ) .

The largest slope in the diagram is given by

d — (d — n(k)) n(k) rij
max — — —— = max —-— = max ,, •; , .

k d-(d-k) k k j l(Cj)

This corresponds to the solution of (2.43) near A = 0

+••• ' (2"45)
which should be compared with (2.42). If there is cancellation of terms in
the coefficients of (2.43), then it is possible that c = 0 in (2.45) and the first
nonzero term in the expansion z = ciA£l + • • • satisfies s\ > m&Xjrij/l(Cj).
The exponent is a rational number yet to be found by the Newton diagram.
By Section 2.3, —e\ gives the order u.

Theorem 7 The order of the iteration operator K. denned in (2.3) can be
computed from the digraph of G(M — N) and

m
u = max{— : there exists Cj such that l(Cj) = k and rij = m, and

l(Cj)=k,nj=m

where each Cj is a circuit in the digraph G(M — N) and rij is given in
Definition 2.

Corollary 1 The order of the iteration operator K has the upper bound

<

Since l(Cj) < d and rij < l(Cj), it is easy to see that Lemma 1 of Section
2.3 holds.

We will now prove Theorem 4, which states that u < 1 if and only if N is
nilpotent.
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Proof of Theorem 4. We prove the complement: u = 1 if and only if N is
not nilpotent. Since the Newton diagram always contains the point (d, d), we
obtain u> = 1 if and only if it also contains the point (d — k,d — k) for some
k G {l,...,d}. From (2.43), we conclude that this can happen if and only
if, for some k E {l,...,d}, the polynomial T,i(cj)=k{-l)ievw(CvXM ~ N)
contains a nonzero constant term. Such a constant term is a weight of a
circuit containing only elements of N, whence

u = l if a n d only if ^ (-l)jevw{Cj, N) ^ 0 for some k = l,...,d.

l(Cj)=k

By (2.40), this implies that at least one coefficient in expansion (2.39) for N
is nonzero. But this happens if and only if N is not nilpotent. •

For the Gauss-Seidel iteration, A is decomposed so that N contains the
upper triangular part of A.

Corollary 2 The order of the iteration operator corresponding to Gauss-
Seidel iteration is always < 1.

The Newton diagram can also be used to compute the type of the iteration
operator JC. For the derivation of the following result we refer to Miekkala
and Nevanlinna (1992).

Theorem 8 Let Cmax denote the set of all circuits yielding the maximum
quotient in Theorem 7. Then c in the expression of the type r = cT of the
iteration operator K is the largest root in absolute value of the equation

°d+ J2 [ Jl (-l)jevw(Cj,M - N) ) cd~k = 0.

If there is only one circuit, CTO say, giving u, then c satisfies the equation

ck + (_1)"»«t-w;(crnj M-N) = 0,

where k = l(Cm) a n d rnev is the number of even components in Cm.

We have shown how the order of the iteration operator can be computed
from the graph G(M — N). For large systems this may be a very large graph.
It is possible to construct smaller graphs from G(M — N) still containing
the essential information for computing u>. Two such graphs are defined in
Miekkala and Nevanlinna (1992). One gives u) exactly, the other, based on
block partitioning of A, gives an upper bound on ui.

Quite often the dependencies between subsystems are modelled by con-
structing a graph Gs, where one vertex corresponds to one subsystem, and
there is an edge from vertex V{ to Vj if and only if there is at least one connec-
tion from some of the vertices belonging to subsystem i in the original graph
to some of the vertices belonging to subsystem j . This does give an upper
bound for maXj rij/l(Cj), but it may be pessimistic.
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Our results are related to the accuracy increase studied by Juang (1990).
Assuming Taylor series expansions near time t = 0 for the iterates and the
exact solution, the accuracy of the iterate is defined to be the number of correct
terms in its Taylor series. The classical Picard-Lindelof iteration (JV = —A)
increases accuracy by at least one at every iteration. Juang showed how
the accuracy increase of block Gauss-Seidel can be studied by examining
circuits in the dependency graph Gs- If all subsystems contain only one
vertex (pointwise Gauss-Seidel), then min^ l(Cj)/rij equals the lower bound
for accuracy increase proved by Juang. In general, we have the inequalities

u < (accuracy increase)""1 < max , 3. .
Gs l(Lj)

2.6. Other remarks

From the basic estimate of the form

|/Cn|T < C ( ^ ^ ) n / u ; , (2.46)
n

we see that, for relatively long windows, we reach the 'superlinear era' after
O(T) sweeps, when n > BeuiT. Simultaneously, the error at t S> O{T) still
decays at most linearly, if at all.

We shall see below that the convergence on [0, oo) is of the following form.
If K 7̂  0, then the spectral radius p(fC) is positive and

(2.47)

Combined with the superlinear estimate, the convergence can be bounded by

\Kn\T < mm{C(^^)n^, C£(p(lC) + s)n}. (2.48)
nn

For sufficiently small p(/C) and large T, superlinear convergence does not
occur for practical tolerances.

Since \K,n\1/n -> 0 as n -» oo but \JCn\Un -> p(fC) > 0, the spectrum is not
continuous as T —> oo. Trefethen (1992) has denned the pseudospectrum for
an operator A on a, Banach space by

A£(A) := {A € C : ||i?(A,.4)|| > 1/e}. (2.49)

Here it is understood that ||i2(A, «4)|| = oo if and only if A G a (A). Notice

Lumsdaine and Wu (1995) have shown that even though the spectrum is
not continuous at T = oo, we do obtain

lim Ae(/Cr) = A£(/Coo) (2.50)
T—»oo

for e > 0, where K-T and K,^ denote the operator K, acting on L,2[0,T] and
L,2[0, oo) respectively.
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3. Infinite windows

3.1. Definition of spaces

In practice one would not usually iterate on [0, oo), but the infinitely long win-
dow is a natural setup for stiff problems and for DAEs: for the fast transients
a finite window [0, T] can be regarded as infinitely long.

The exceptional situation with stiff problems would appear if couplings are
very small, that is, T\N\ = 0(1), then by the discussion of Section 2 we
would have superlinear convergence. For T\N\ S> 1 we typically obtain only
linear convergence, and one of the first interesting things is that the linear
rate given by the spectral radius is very insensitive to the choice of norm.

Let X be a Banach space of functions x : [0, oo) —> C such that the
following conditions hold:

(i) extc with Re A > 0 and 0 ^ c € Cd is not in X;

(ii) eXtp(t), where p is a Cd-valued polynomial and Re A < 0, is in X;

(iii) x i—> /0 e(s~^BCx(s) ds, where B, C are constant matrices and the
eigenvalues of B have positive real parts, are bounded operators in X;

(iv) test functions CQ° are dense in X.

Let || • || denote the norm in X. By (iii), a(M) C C+ implies that K is
a bounded operator in X. In order to formulate our results we recall the
definition of the symbol

K(z):=(z + M)-1N (3.1)

The basic property of X is that it is 'unweighted' in exponential scales.
However, such scaling is trivial and simply translates the imaginary axis:
requirements on real parts being positive would become positive lower bounds
on real parts.

The properties (i) and (iii) imply that if we try to solve our initial value
problem in X we must require that all eigenvalues of A have positive real
parts. Furthermore the following holds.

Theorem 9 If all eigenvalues of A have positive real parts, then K is a
bounded operator in X if and only if the eigenvalues of M have positive real
parts.

Proof. The sufficiency part is of course obvious, while the necessity needs
a small discussion. In Miekkala and Nevanlinna (1987a) the result is proved
for Lp spaces.

Assume that K, is bounded in X and that // is an eigenvalue of M with
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nonpositive real part. Let J denote the Jordan block

/ A* 1 \

J =
1

A* /
associated with this eigenvalue, and let S be a similarity transform such that
M = S~lMS is of the form

M = \ 0 Mo

Put N = S~1NS and let the corresponding operator be denoted by K. Since
multiplication by a constant matrix is bounded in X, and K = S'^-KS, K
is bounded in X. Let the block structure induced by M be denoted by

Nn N12

N2i N22

We claim that there exists c G Cd such that

with b\ -£ 0. Indeed, if N\\ 7̂  0, then this is trivial, while if N\\ = 0> then
the claim follows from Ni2 ̂  0. jVn and ^12 cannot simultaneously vanish
because every eigenvalue of A has positive real part.

Let c be as above and let A be any complex number such that Re A < 0.
Then u := eXtc is an element of X, whence Ku £ X. Let k be the largest
index i for which bu ^ 0, where 61 = (t»n, 612,.. -)T• Then the kth. component
of the vector Ku satisfies

,ji{s-t)e\s d s bikek,

where ek G C denotes the usual cordinate vector.
For any / G X, define

£f:=(ek,Kf)c,

where (•, •) denotes the usual inner product in C . Since Cf can also be written
as CK, with C = ce£, we see that C is bounded in X. By construction,
Cu = e~flt * eXtc and, since u = eXtc G X, we have e~fJlt * extc G X. This
implies e~/ltc G X, which, by (i), implies Ke/j, > 0. By assumption, Ke/j, < 0
and we conclude that // = i£ and v := e~l^tc G X.

It is easily checked that

£nv = -v,
n!
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for all n > 0. But, since C is bounded, we may put

n>0

and obtain the contradiction

n

3.2. The spectrum and the spectral radius

From now on we assume that the eigenvalues of M have positive real parts.
The main result here may be found in Nevanlinna (1990a).

Theorem 10 In every space X, we have c(IC) = cl M o~(K{z)).
Rez>0

We state some consequences before embarking on the proof.

Corollary 3 p(/C) = max{.&:(i£) : £ € R}.

Proof. Since the eigenvalues of M have positive real parts, K(z) is analytic
in the closed right half plane. The claim follows from Theorem 10 using
the maximum principle, on a Riemann surface corresponding to the algebraic
function formed by the eigenvalues of K(z), and the fact that all eigenvalues of
K(z) vanish at infinity. Alternatively, we may apply the maximum principle
directly to the spectral radius of K(z), because it is a subharmonic function;
see Theorem 3.4.7 in Aupetit (1991). •

Corollary 4 c(/C) is compact and connected, and 0 G cr(/C).

Proof. All branches of the algebraic function vanish at infinity. Thus all
components of cr(/C) contain the origin, which implies connectedness. Com-
pactness is obvious, remembering that K is bounded by assumption (iii).
•
Corollary 5 p{K) = 0 if and only if there exists m < d such that /Cm = 0.

Proof. If p{K) = 0 then K(z) is nilpotent for all z in the right half plane.
Thus there exists m < d such that K(z)m = 0, for all z. Now Km applied
to, say, test functions can be written using the inverse Laplace transform in
terms of K(z)m. Since test functions are dense in X and Km is continuous,
Km must vanish in all of X. The converse is trivial. D

Comparing this corollary with Theorem 3 in Section 2 we see that p{K) > 0
in X if and only if K. is of positive order in C[0, T\.
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Proof of Theorem 10. The formula

R{\, K)f(t) = jf(t) + ^ jT* e-^-^M-x-lir>Nf(a) ds (3.2)

is valid for alH > 0 and A ̂  0, and at least for smooth / (see Section 2.1).
This implies immediately that R(\,JC) is bounded in X by (iii) and (iv),
provided that all eigenvalues of M — \~1N have positive real parts.

On the other hand, suppose that M — A"1 N has an eigenvalue, fi say, with
negative real part. Denoting the corresponding eigenvector by b, we choose
/ to be the solution of / + Mf = 0 with /(0) = b. Thus / is in X by
(ii). However, from (2.14) we see that u(t) = e~M*6, and thus u 0 X by (i).
Finally, suppose that M — \~l N has a purely imaginary nonzero eigenvalue
Ao- Then, since M — \~1 N is analytic in A, M — A"1 iV would have at
least one eigenvalue with negative real part near Ao, unless the eigenvalue
is constant. In that case M would also have a purely imaginary eigenvalue,
contradicting our hypothesis. Since the spectrum is closed, such a Ao does
belong to the spectrum, and we can conclude that A € o~(JC) \ {0} if and only
if det (M — A N — fi) vanishes for some fi with nonpositive real part.

Writing z = —fi and recalling that z + M is invertible for Re z > 0, we
deduce that det ((A — z + M) N) vanishes for some z with non-negative real
part.

Thus 0 ^ A € cr{K) if and only if there is a z, Rez > 0, such that
A G a(K(z)). Since K{z) —> 0 as z —+ oo and o~{K) is closed, we deduce
0 € <T(/C), and the claim follows. •

Since the spectral radius p(fC) is independent of the space X we may loosely
say that the iteration converges on [0, oo) if and only if p(K.) < 1. Note that

\\ICn\\l/n ^ P(IC), (3.3)

so that, for any e > 0, there exists C < oo for which

\\Kn\\<C{p{K) + e)n, (3.4)

but that in general C depends on both £ and on the ambient norm.
The formula p(K) = max.(: p(K(i£)) is very easy to use in practice. For

example, in several special cases one has

which simply means that the convergence is dominated by the speed of con-
vergence of the iteration

Mxk+1 = Nxk + b (3.6)

for Ax = b. Such situations can occur, for instance in Jacobi splittings of
linearized versions of parabolic equations. Results of this form have been
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discussed in Miekkala and Nevanlinna (1987a). This paper also contains res-
ults where p{K) > p(K(0)). As an example we mention SOR for consistently
ordered matrices. In this case the rate of convergence (p(K(0))) is known for
iteration (3.6). It turns out that for consistently ordered matrices, we obtain
p{K,) = p(K(0)) for small values of the overrelaxation parameter u. However,
when u) is close to 2, we have p(JC) > p(K(0)) and the iteration can diverge.
For the precise result, see Theorem 4.1 in Miekkala and Nevanlinna (1987a).

In comparing two splittings it is important to notice that a splitting that
looks favourable on [0, oo) may look inferior on [0, T] and vice versa. For
example, by Theorem 4 of Section 2, the order of R(\, K.) is always less than
1 for Gauss-Seidel splitting on C[0,T), whilst for overrelaxation splittings
the order equals 1 if the diagonal does not vanish. On the other hand, for
consistently ordered matrices, for instance, p{K) initially decreases as the
overrelaxation parameter increases from 1. So the Gauss-Seidel splitting
provides ultimately the fastest convergence rate on finite windows, but on the
infinite interval creates propagating error waves, which are best damped with
a modest amount of overrelaxation. Overrelaxing too much will in turn cause
growing error waves, making the process diverge on the infinite window.

3.3. On generalizing the theory for DAE systems

Let us change the model problem to

Bx + Ax = f (3.7)

with consistent initial values for x, where B may be singular and / is suffi-
ciently smooth (the required smoothness depends on the index of the system).
The boundedness assumption for continuous solutions of (3.7) on the infinite
time interval becomes

det(zB + A)^0, Rez>0.

To see this and for the whole analysis of Miekkala (1989), one needs to use
the Kronecker Canonical Form (KCF) of the DAE (Gantmacher 1959). De-
compositions of the matrices B = MB — NB and A = MA — NA define the
dynamic iteration for (3.7)

MBxn + MAxn = NBX71'1 + NAxn-1 + f, n = 1,2,... (3.8)

with consistent initial values for x. The iteration operator can now be written
after transformation of (3.8) into KCF form, and constitutes two parts, one
being an integral operator and the other a sum of matrix multiplication and
differentiation operators. The basic difference to the ODE case is that, in
order to guarantee boundedness of iteration (3.8), one needs to preserve the
structure of the DAE while decomposing B and A in (3.7). Essentially,
we mean that the index is preserved and the state variables and algebraic



ITERATIVE SOLUTION OF LINEAR O D E S 277

variables are preserved. The condition is formulated for the KCF of (3.8),
but in Miekkala (1989) there is an error, corrected in Miekkala (1991). The
space where x is iterated by (3.8) is chosen in Miekkala (1989) to be that
of continuously differentiable functions with appropriate norm, but one could
equally well use the space of continuous functions with the uniform norm. The
smoothness requirement for / is essential since, for high index DAE systems,
some components of the solution of (3.7) depend on derivatives of / . For index
one (or zero) systems one might consider iteration (3.8) in L^-space (both /
and xn in LP), as in the ODE-case; the results of Miekkala (1989) still hold.
For high index DAEs the space has to be modified so that the components
corresponding to high index algebraic variables have different requirements
from the other components. In general it would be difficult to recognize these
components, but in applications it is sometimes possible. In Section 7 this
kind of modified I^-space formulation is used for the index two case.

In Miekkala (1989), assuming that the algebraic part of the iteration op-
erator is bounded, the other results are analogous to the ODE case. For
example,

det(zMB + MA) ^ 0, Re z > 0, (3.9)

is needed for boundedness of the iteration. The convergence rate is given by
the 'Laplace transform' of (3.8),

P(ICDAE)= sup P{{zMB + MA)-l{zNB + NA)). (3.10)
Re2>0

Convergence results, like those for consistently ordered matrices, can be gen-
eralized to special index one systems.

4. Acceleration techniques

We can accelerate waveform relaxation in two ways: we can try to get the
error to decrease more rapidly per iteration, or spend less time integrating
the early sweeps. The latter strategy is outlined in connection with the dis-
cretization, while here we address the former possibility.

4-1- The speed of optimal Krylov methods

Suppose the initial value problem has been transformed into the fixed-point
problem

x = Kx + g. (4.1)

Instead of iterating as usual, that is

xk+1 := Kxk + g, (4.2)

we could in principle keep all the vectors {xk} in memory and try to find as
good a linear combination of these as possible.
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We outline first the abstract Krylov subspace method approach; see Nevan-
linna (1993). Let A be a bounded operator in a Banach space and b a vector
in that space. Put

Kn(A,b):= spani^h^-1 (4.3)

and

K(A, b) := cl span{Ajb}^. (4.4)

Thus, K(A, b) is the smallest closed invariant subspace of A that contains
b. In fact either dimKn(A, b) = n or there exists m < n such that, for all
k > m,

Kk(A,b) = Km(A,b). (4.5)

If we are given a fixed point problem

x = Ax + b, (4.6)

such that 1 £ cr(A), then clearly x = (1 — A)~lb. Consider the following
simple embedding:

xx = jAxx + b, (4.7)

and assume that cr(A) does not separate 1 from oo. Then there exists a path
X(s) : A(l) = 1, A(oo) = oo such that (4.7) has a solution x\ and clearly
this solution is continuous along the path. Trivially, the Krylov subspace of
\~XA equals that of A for nonzero A. For |A| > ||«4|| we have

oo

-U)fc&, (4.8)

which shows that x\ G K(A,b). By continuity, as A(s) —» 1 and because
K(A,b) is a closed set, we have x G K(A,b), and K(A,b) is invariant for
(1 - A]T1 as well.

We assume in the following that 1 £• a (A) and that <r(A) does not separate
1 from oo. That the latter must be assumed is clear from the maximum
principle, but can be understood immediately from the following example.

If A := pS where p > 1 and S : ej *—> ej + 1 is the unitary shift in ^(Z) , then
a (A) is the circle centred at the origin of radius p and 1 is separated from oo.
If b := eo, then K(A,eo) = cl span{ej}o° whilst the solution x 0 K{A,BQ).

In fact, x = Z-ooP
1'iej.

Every vector in Kn(A, b) is of the form qn-i(A)b for some polynomial qn-\
of degree n — 1. Let us write

(4.9)

where q is a given polynomial; then q(A) approximates (1 — A)~l well if and
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only if p(A) is small. In fact we have the following result (Nevanlinna 1993,
Proposition 1.6.1).

Proposition 4 ^_L_||p(.A)|| < | |(i_^)-i_g(^)| | < IKl-^)"1!!!!^)!!.

Now, it is of interest to ask how small p(A) can be. Therefore set bn(A) :=
inf ||p(«4)|| where the infimum is taken over all polynomials of degree at most
n, satisfying p(l) = 1 (see (4.9)).

Definition 3 (Nevanlinna 1990a, and Definition 3.3.1 in Nevanlinna 1993).
Given a bounded A, define

We call Tj(A) the optimal reduction factor of A.

The main properties of T](A) are collected in the following theorem.

Theorem 11

(i) 77(̂ 4.) < 1 if and only if 1 ^ o~(A) and a {A) does not separate 1 from
00;

(ii) if r)(A) < 1 then r)(A) = 0 if and only if cap(<r(.4)) = 0;
(iii) 0 < r)(A) < 1, then the value of rj(A) only depends on cr(A) and
is given by r)(A) = e~9^\ where g is the (extended) Green's function,
satisfying

• g is harmonic in the unbounded component G of C\a(A);
• g(X) = log|A| + 0 ( l ) as A-> 00;
• g(X) -> 0 as A -> C from G, for every ( e dG C da(A).

Proof. These are covered by Theorem 3.3.4 and Theorem 3.4.9 in Nevan-
linna (1993)

Operators A for which cap(cr(.4)) = 0 are quasialgebraic. In such a case
a {A) cannot separate 1 from 00, so that we can combine (i) and (ii) in the
statement: The optimal reduction factor vanishes exactly for quasialgebraic
operators with 1 0 a {A).

This is analogous to the vanishing of the spectral radius for quasinilpotent
operators.

We shall say that A is algebraic if #(.4) = 0 for some polynomial q. Thus
nilpotent operators form a subclass of algebraic operators.

4-2. Finite windows

Consider K. in C[0,T]. From Section 2 we know that

|£"|T ~ (£1^)"/" (4.10)
n
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as n —> oo. We do not know sharp lower bounds for

bn(JC)= inf \p(JC)\T (4.11)
degp<n, p(l)=l

for general /C, but we give an illustrative example instead. Consider the
following operator V,

ft
Vu(t) := / u(s)ds (4.12)

Jo
or M = 0 and N = 1. Then clearly

|Vn|r = ^ , (4.13)

so that u> = 1, T = T. The following result shows that, when it is optimally
accelerated, we obtain a speed of convergence in which the order is still 1 but
the type is lowered from T to T/4.

Theorem 12 Let V = /0* operate in C[0, T]. Then for n > 2

< bn(V) < 8(1 + T ) e T p \ (4.14)
\n l j !n! \ j

Proof. This is proposition 5.2.5 in Nevanlinna (1993).

Thus, the speed can be accelerated, but not dramatically.

4-3. Infinite windows

Let X be any space considered in Section 3.1. The first result says that
acceleration is possible, but then we shall see that the acceleration is often
only of modest nature.

Theorem 13

(i) r/(/C) = 0 only if p(K) = 0.
(ii) If 0 < T/(/C) < 1 then r){K) < p{K).

Proof. This is Theorem 4 in Nevanlinna (1990a). •

Recall that p(/C) = 0 implies that K. is nilpotent, so that the interesting case is
(ii). By Theorem 11 r/(/C) < 1 if and only if 1 0 <?{K) and 1 is not separated
from oo by a()C). In this setup, the case 1 ^ &(£) can occur, so that the
fixed point problem

x = Kx + g (4-15)

would as such be well posed in X, but for all normalized polynomials p we
would have

||p(/C)|| > 1. (4.16)
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In fact, since <J(K) is connected and contains the origin, we require real M
and N such that, if <J{K) is symmetric over the real axis, then 1 ̂  cr(/C) but
a € &{)C) for some a > 1.

To see how much smaller r)(IC) can be compared with p(IC) consider the
following simple example. Let

Cu(t) = p f e-(*-sVs) ds, (4.17)
Jo

with p > 0. Then
= {\:\\-p/2\<p/2}. (4.18)

Thus p{C) = p while T](C) = min{ u£_ ,, l } . On the other hand, for the oper-

ator —C we obtain

p(-C)=p and rj(-C) = ^ - p , (4.19)

(Nevaniinna 1990a, page 155). In particular, if p = 1 — e with a small
£ > 0 then ??(£) ~ 1 — 2e, and this is only a 'modest' improvement, while
r){—C) ~ | , in which case we would speak about 'dramatic' improvement.
More generally, if p(/C) G c(/C), with p(/C) = 1 — £, then there cannot be
any dramatic improvement for the following reason: the boundary of cr(/C)
must be smooth near p{K) (by Proposition 2 in Nevaniinna (1990 a) and the
Green's function g(X) ~ O(dist(X,a(IC))) and r){K) = e'9^ = 1 - O{e).
This should be contrasted with the situation for self-adjoint operators A., for
which the spectrum would be contained in an interval. Near the end point
the corresponding Green's function would stretch the distance like the square
root function and one would have r}(A) = 1 — O(y/e), a well known effect of
the conjugate gradient method. Finally, if p(/C) <C 1, then it is possible to
bound p(fC) in terms of T}(JC). In fact, since <r(/C) is connected and contains
both 0 and p(JC)eld, for some 0, one has

p(JC) > cap(<r(/C)) > \p{K). (4.20)

This allows us to formulate the following theorem.

Theorem 14 For every K. we have as e —• 0,

V(elC)>(\ + o(l))p(eJC). (4.21)

Proof. If g£ is the Green's function for the outside of cr(e/C), then

rj(elC) = e~9'W = (1 + o(l))ecap(a(/C)), as e -> 0. (4.22)

D

To summarize: Krylov subspace acceleration is always possible, but dramatic
improvement is obtained only if the distance between 0"(/C) and 1 is essentially
larger than 1 — p(/C).
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4-4- Time-dependent linear combinations

By a subspace method we mean any Krylov-subspace method that takes linear
combinations of sweeps. To generalize this, we may think of processing the
sweeps with some other operation. We outline here an approach of Lubich
(1992). The basic special assumption here is that one decomposes A = ml —
(ml — A), so that the unaccelerated version would be

xk+1+mxk+1 = Nxk + f, xk+1(0) = x0. (4.23)

Observe that multiplication with m commutes with N.
The accelerated version is as follows. Given xk, solve

uk + muk = Nxk + / , uk(0) = x0, (4.24)

set

vk := uk - xk (4.25)

and solve again for w from

wk + \kw
k = vk, wk(0) = 0. (4.26)

Finally, set
xk+1

 : = uk + akv
k + 0kw

k. (4.27)

Note that all equations and substitutions (4.24)-(4.27) are on the component
level, apart from the evaluation of Nxk in (4.24) - in this sense the extra work
is small compared with (4.23). The parameters ak, 0k and Xk can now be
chosen so that the error reduction in L2(R+) is the same as that of Chebyshev
acceleration of Richardson's iteration

xk+i =xk__ ±Axk + l f e

m m
for the static linear system Ax = b. To see that this is possible, compute the
Laplace transform of the iteration error, and require this to be the Chebyshev
acceleration of the Laplace transform of the iteration error of the basic scheme
(4.23) for every z.

Related ideas are also discussed in Skeel (1989) and Reichelt, White and
Allen (1995).

4-5. Overlapping splittings

If M in the splitting A = M — N is chosen to be a block diagonal of A then the
iteration (2.2) can clearly be computed in parallel for each small subsystem
corresponding to one block of A. This is known as block Jacobi iteration. If
the order of the original system was d and we use s subsystems (blocks) we
only need to solve systems of order d/s in parallel. The reduction of work
(and time) is so large that one might as well increase the size of subsystems
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with a few components without losing this gain. The idea of overlapping
was introduced by Jeltsch and Pohl (1995) in order to accelerate convergence
of WR iteration. For block Jacobi iteration it can be best explained by an
example.

Example 2 Let

A = X = X2 X3

and we use two subsystems of the same size, so that

A = M-N =

2
- 1

\

2 - 1
- 1 2 /

Unknowns xi, £2 are solved from the first subsystem Si and £3, £4 from the
second S2. The idea of overlapping is that some components of the unknown
vector are assigned to several subsystems, for instance £3 in this example.
Then, in (2.1), we obtain

A =

and

M-N =

f

V

7

2
- 1

=

\

- 1
2

- 1
- 1

2
- 1

- 1
2

- 1
2

- 1

2
- 1

- 1
2

- 1
- 1

2

2
- 1

\

, X = (£i £2

\ / o

- 1
2 /

—
0
0

V

x.

0
0
0
1

J.I

0
0
0
0

Z3.2

0
0
0

£ 4 )

1
0
0 )

We use the first system to find {xi,X2,a;3.i} and the second to calculate
{£3.2, £4}. The value used for £3 in the next iteration is taken as the linear
combination £3 = a£3.i + (1 — a)£3.2

The number of overlapping components between subsystems was first one,
then two, in this example. This number is called the overlap and we denote
it by o.

In general it is reasonable to assume that if we have s > 2 subsystems then
(Al): The overlapping components are assigned to at most two common

subsystems.
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The overlap o can be defined as the maximum number of overlapping com-
ponents in the intersections Sj n S^-

Jeltsch and Pohl (1995) formulated overlapping splittings for block Jacobi
iteration at the subsystem level, and showed that a convergence analysis sim-
ilar to that of basic WR can be carried out. Their numerical results suggested
that overlapping accelerates the convergence of WR. In order to explain when
and why this happens we describe the process for the whole system. Let us
assume that the splitting M — N corresponds to block Jacobi iteration. Thus
the components of x corresponding to each subsystem must be numbered
consecutively, and M must be block diagonal.

When we have chosen the overlapping components of x we modify (2.1) as
follows:

• If Xi is copied from subsystem k\ to subsystem &2, then rename it Zj.^,
and add a new component Xj.fe2 to subsystem &2-

• Duplicate the zth row of system (2.1), X{ + Ylj=i ^ijxj = fi> a n d add
the duplicated row to the row corresponding to index z.A .̂

Hence each overlapping component increments the dimension of A by one
by duplicating a row and adjoining a new column to the new duplicated
component. Between the integration sweeps, each overlapped component Xj
of x is postprocessed by replacing both copies with a linear combination of
the overlapped components. The effect for the whole solution can be viewed
as a multiplication by a constant matrix E. From the iteration's perspective,
the iteration matrix (zl + M)~lN is replaced by (zl + M)~lNE. Since the
overlapped components of x are in the nullspace of N, the graphs of NE and
G(N) are identical.

We shall show that overlapping can accelerate convergence by decreasing
the order u of the iteration operator /C. The order can be computed from the
directed graph of the matrix A as stated in Section 2.5.

4-6. How overlapping decreases the order

The graph G(A) is formed from G(A) by making the following modifications
to G(A).

• Duplicate the vertices of G{A) corresponding to the overlapped compon-
ents.

• Duplicate the edges coming into the vertices corresponding to the over-
lapped components.

The latter statement demands some explanation. If a vertex v is duplicated
from subsystem k\ to subsystem fo, then for the copy in k\, draw all edges
incident to v in G(A) not linked to subsystem k%- Similarly, for the copy of v
in subsystem k2, draw the edges incident to v not intersecting subsystem k\.
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a) • « 0

G(A)

• b) • 9

G(A)

i
^—y

with

0

O=l

c) • 0 O X® O

G(A) with o=2

Fig. 2. Directed graphs of Example 2. Edges belonging to G(N) are denoted by
dashed lines. Duplicated vertices are recognized by shading.

a ) • » o • b ) • • 0 * 0 •

no overlap O =1

c) • « 0 *# O •

o=2

Fig. 3. Critical cycles of Example 2. Edges belonging to G(N) are denoted by
dashed lines.

All these edges were also in G(A). The new edges are copies of the incoming
edges of v.

Example 2 continued. The directed graphs of A and A are given in Fig. 2.
The cycles giving max(rij/l(Cj)) in G(M — N) or G(M — N) are given in
Figure 3.

This example is summarized in Table 1, and overlapping decreases u;graph,
and hence the order of the iteration operator.

Table 1.

o

0
1
2

^gra

1
2/4 =
2/6 =

Ph

1/2
1/3
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Fig. 4. Graph structure corresponding to a band matrix with 6 = 2. The edges
with arrows in both heads are abbreviations of two edges connecting the vertices

both ways.

In general, assuming condition (Al) given in Section 4.5, and that only
adjoining subsystems (5/ and S/+i) overlap, we can derive our next result.

Theorem 15 Using overlapping in block Jacobi iteration never increases
the ratio u;graph.

The proof is based on showing that the only new circuits created in G(A)
when compared to the original graph G(A) are such that the maximum ratio
of rij/l(Cj) is smaller than in G(A). Simultaneously, for the old circuits
remaining also in G(A), the ratio rij/l(Cj) may decrease to 0 if the overlapping
is such that the circuit stays inside one subsystem in the new graph G(A).
The detailed proof is given in Miekkala (1996); the following result is a direct
consequence.

Corollary 6 If u;graph is determined only by the cycle C\, and C\ can be
contained into one of the subsystems using overlapping, then wgraph decreases.

This result tells us how overlapping should be used to accelerate convergence
of the iteration. Indeed, the cycle (or cycles) attaining ma,x(rij/l(Cj)) in
G(M — N) should first be located, and then the subsystems overlapped in
such a way that this cycle stays inside one of the enlarged subsystems.

The matrix A in Example 2 was the so-called Laplacian matrix, a band
matrix. We will now show how overlapping decreases the order for general
band matrices. The band width is denoted by 2 6 + 1 , where 6 is the smallest
integer for which Aij = 0 whenever \i — j \ > 6.

Once again we need only study overlapping between two consecutive sub-
systems, say Si and S2. In graph theoretic language, 6 = 1 means that every
pair of adjacent vertices is connected by a loop of length two; for b = n, every
pair of vertices at mutual distance at most n is connected by a loop of length
two. Figure 2 shows the case 6 = 1 and Figure 4 case 6 = 2 ; the general case
should be obvious (if too messy to draw).

We have already analysed overlapping vertices for 6 = 1, in Example 2.
The interface between the subsystems has o overlapping vertices; thus the
coupling edge entering one subsystem from another has to skip o vertices.
From Figures 2 and 3, we conclude that the cycle between the subsystems
satisfies l(Cj) = o + o + 2 = 2o + 2 and nj = 2. Therefore u;graph = (o + l ) " 1 .
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V 2 . 1 ^ - - ^
Vi • * - 6 • • «o o N \

\ \

"- " V(b+1).2

b)

Fig. 5. a) Using overlap o < b does not change the indicated loop between the
subsystems, b) A critical circuit for o — b.

In the general case, the length of the critical circuit is l(Cj) = 2 + 2[o/b\.
Since the graph of a band matrix contains loops as in Figure 5a, it is clear
that these loops remain in G(A) for o € {1, . . . ,b — 1}. Hence wgraph = 1
for these values of o. If o = b, then we duplicate b subsequent vertices as in
Figure 5b and the critical circuit

v\ - > f (6+ i ) .2 ->• vb+2 - > V2.1 ->• v\

has length 4. If overlap o € {b + 1 , . . . . 2b — 1}, then we still get a circuit of
length 4 and n3• = 2, that is

When o = 2b, the second edge of this circuit cannot occur because o + 2 —
(6 + 1) > b and the length of the critical circuit increases to 6. The general
result should now be obvious.

Theorem 16 Let A be a band matrix of band width 2 6 + 1 and use block
Jacobi iteration with overlap o in (2.2). Then

5. Discretized iterations

The results of the previous sections have analogues for discretized equations.
We briefly discuss these analogues and then look at the new phenomena that
arise when several grids are used during the calculation. Also, we mention
some interesting step size control problems.

5.1. Discretization methods

The most natural approach to 'continuous time iteration' is simply to apply
reliable software to integrate the associated equations. The process is suffi-
ciently robust for results on the continuous version to describe what happens
in practice, as long as the iteration errors are larger than the discretization
errors. This robustness can be seen very well from an exact analysis of the
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discretized equations. Here we consider linear multistep methods with a con-
stant time step h:

k k k

\ £ a X + i + E &M<+j = E PiW<?j + /»+i)- (5-1)
j=0 j=0 j=0

As is customary, we use operator notation for the linear multistep methods.
In order to avoid confusion with the spectral radius and the spectrum, we set

i=o j=o

We normalize 6(1) = 1, require that the order of consistency satisfies p > 1,
and assume that a(Q and &(£) have no common factors. We abbreviate

k
j

In this notation, (5.1) reads

\axv + bMxv = bNx"~l + bf. (5.3)
a

As in the continuous case it is advantageous to introduce a linear operator
Kh and write the solution of the difference equation (5.3) in the form

xu = Khx
v~l + <ph. (5.4)

Here Kh is well denned provided we understand the sequences to vanish
for negative indices and

?^(-fcM). (5.5)
Pk

In what follows we shall always assume that (5.5) holds. The role of the
Laplace transform is played by the '^-transform'.

If Xh denotes C -valued sequences, then we write
oo

and this leads to the following expression for the symbol of K-h'.

Kh(Q := (ia(C) + 6(C)M)"16(C)iV. (5.6)

In particular, K^Q = K(a{(,)/hb(Q). It is also useful to write vn = v(nh)
for v 6 Xh. We shall need standard terminology to describe the stability
properties of the method (a, b).

Definition 4 The stability region S consists of those /i € CU{oo} for which
the polynomial a(Q — fxb(Q (around oo consider pT^a — b) satisfies the root
condition. The method is called strongly stable if all roots of a(£)/(£ — 1) are
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less than one in modulus. The method is called A-stable if S contains the
closed left half plane.

5.2. Finite windows

Consider bounding K,vh on the 'window' 0 < j < T/2. We identify the vectors
v € Xh by sequences indexed over Z with v vanishing for negative indices
and

\VJ • (5.7)\
0<hj<T]

Theorem 17 If ak/hpk £ <r(-M), then, in the window 0 < j < T/h JCh

has the spectral radius

p(Kh)=p{K{ak/hfa)). (5.8)

This is Theorem 4.1 in Nevanlinna (1989c). Comparing this with (5.6), ob-
serve that z —> oo corresponds to £ —> oo and lim^oo a(<^)/hb(Q = Oik/hflk.
It should be noticed that, unlike the infinite window case, we do not obtain
a result of the form p{K.h) = p(JC) + O(hp) with p related to the accuracy of
the discretization method. However, the following holds.

Corollary 7 Under the assumptions of Theorem 17 we have

as/i-0, (5.9)
ock

if K. is of order UJ and of type r = cT.

Proof. This follows immediately from the defining relation of u and c (see
Section 2.1, line (2.37)) by choosing z = z(h) = ak/hj3k. •

As this corollary shows, the decay of \IC^\T as k —> oo is again related to
the order and type of the original resolvent operator. Upper bounds again
hold, analogous to those in Section 2.4 for |/C \T, but here we just refer to
the original paper by Nevanlinna (1989 c).

5.3. Infinite windows

We now look at the usual ^2-space of square summable Cd-valued sequences
(but again the spectral radius of K-h would be the same for a large class of
'unsealed' norms). Now the local solvability condition ak/h/3k $ a(—M) is
still needed for K-h to be well defined, but another condition is needed to
guarantee that Kh is bounded in £2. In the continuous case this was simply
the condition a(—M) C C_. Now the role of C_ is played by the stability
region below.

Proposition 5 If a{—M) C h~1'mtS, then K is bounded in £2-

Proof. This is Lemma 3.1 in Miekkala and Nevanlinna (19876). •
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The correspondence of C+ with h~1(C \ S), best seen in the fact Kh{Q =
K(a(Q/hb(Q), immediately explains this Proposition and related claims. For
example, the boundaries of these sets osculate at the origin, displaying the
order of accuracy. However, in order to obtain the exact formulation we need
the following concept.

Definition 5 A multistep method (a, b) has order of amplitude fitting q if
the principal root CI(M) °f a(C) ~ /-^(C) ~ 0 (the zero for which CI(M) ~ e^ =

satisfies |Ci(it)| - 1 = O(t«+1) , for small real t.

Thus q > p if p is the usual discretization order, and, with the trapezoidal
rule for instance, we have q = oo, while p = 2.

Theorem 18 Assume that the multistep method is of amplitude fitting or-
der q and is strongly stable. Then, for all sufficiently small h, Kh is a bounded
operator,

\\!Ch\\ = \\)C\\{l + O(hi)} (5.10)

and

P{Kh)=p{K)[l + O{h«)). (5.11)

Theorem 19 Assume that the multistep method is A-stable. Then, for all
J>1,

Fill < W\\ (5-12)
and

(5.13)

Both Theorem (18) and (19) are proved in Nevanlinna (19906), using res-
ults of Miekkala and Nevanlinna (19876).

For Krylov acceleration it is interesting to know something of the spectrum.

Theorem 20 (Miekkala and Nevanlinna 19876)

a(Kh) = cl (J a(K(a(0/hb(Q)).

Corollary 8 For .A-stable methods we have a(Kh) C a{JC).

Proof. By ^-stability, U|c|>i{°(C)/^(C)} 1S a subset of the closed right half
plane. •

Corollary 9 o~(JCh) consists of at most d components, each containing ei-
genvalues of K(ak/h(3k)-

Proof. By letting £ —> co, we see that the eigenvalues of K(ak/h/3k) belong j
to a{K,h). Each eigenvalue, or, rather, branch of the algebraic function, can j
be continued to |£| > 1, giving at most d components. D j

1
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For example, if we take the implicit Euler method and relatively large
step size, then cr(IC) and a(/C/j), and in particular the corresponding optimal
reduction factors, may differ considerably. Lumsdaine and White (1995) give
an example of this nature.

5.4.. Multigrid in time

The effective use of 'multigrids' in our setup simply consists of balancing the
iteration error and discretization error. Thus one moves only towards ever
finer grids. The computational goal is to be able to compute or simulate the
full system with an amount of work W which is a modest multiple of the
work Wo, say, needed to compute the 'uncoupled' system

= Nx + f(t), u(0) = xQ, (5.14)

to the same tolerance, where x denotes the solution of

x + Mx = Nx + f(t), x(0) = x0. (5.15)

The ideas in setting up such a computational strategy, or 'tolerance game',
have been discussed in Nevanlinna (1989c) and Nevanlinna (19906). We
shall not go into such a discussion here but rather concentrate on two issues
that might cause difficulties if the implementation is careless. It may not be
evident that it is possible to arrange for W = O{WQ) to hold. Two extremes
are possible. First, the step size selection routine is extremely stupid and
the step is constant on the grid. Second, the step size selection process is
extremely clever and the step changes with the smoothness of the solution,
so rapidly reducing the step size when the solution is rough, but increases
the step size stably when the solution becomes smooth. The potential danger
to be avoided is this: in solving stiff problems, it is to be expected that the
solution at the end of the window is smooth. However, on the next window,
say [mT,(m + l)T], the initial guess x°(t) = x(mT) introduces an error
which causes, in exact computation, a travelling error wave, which, however,
has very small support. Roughly speaking, with fixed step strategy the error
wave cannot be supported at all, while integration with automatic software
has to be done with a good step size routine so that not too many time points
are wasted at the thinly supported rough parts. Here we discuss the constant
step case and in the next section the latter one.

For simplicity, let the grid at the u^ iteration level be {jhu}j where the time
step hu = 2~n^ho and n{v) is nondecreasing and unbounded. A detailed
analysis of this is given in Section 3.2. of Nevanlinna (19906). In the iteration
process, whenever the grid is refined (n(u) > n{y — 1)), we need to be able to
extend a grid function vu-\ = {v(jhv-i)} to a grid function on vv = {v{jhu)}.
Thus we have the prolongation operator

Vv : vv-\ —>vv,
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computed with accuracy matching the integration method, but the important
point is that there is also a stability property to be satisfied. In fact, we want
the overall process to decay with a rate essentially equalling p{K), for all
refinement sequences {n(u)}, and this is possible if the prolongation operators
{Va} are stable: there exists a C such that

||n?pa0)||<c, va(j)e{Va}.
The norms here are the naturally induced operator norms; grid functions
vv = {v{jhu)} are normed as follows:

It turns out that there are arbitrary high-order stable prolongations but
that the information should in general be collected from both sides of the grid
points. A symbolic calculus for stepwise translation invariant prolongations
was developed in Nevanlinna (19906). The crucial dilation process here is
quite similar to the subdivision algorithm in CAD or in wavelets and this
eventually led Eirola (1992) to study the obtainable smoothness of wavelets.

For the error analysis the main result is the following theorem.
Let

•B/i/j : = identity on grid functions on {jh^}

Bvlj. := KhvVvBv-i^, v > \i + 1.

Theorem 21 (Nevanlinna 19906) Assume that the multistep method is
strongly stable and we are given a stable set of prolongations. Let ho be
small enough so that

cr(-M) C -hit S
h

holds for all h < hg. Given e > 0 and hv = 2~n(I/S>ho with n{v) nondecreasing
and unbounded, there exists a C such that

This is the key result needed to show that the 'tolerance game' is possible.

5.5. A difficulty due to stiffness

Consider solving

x + Ax = f (5.16)

in a window where the solution is already smooth, that is, the transient has
died out in the earlier window.

Usually one takes the initial function to be identically the initial value and it
is no longer clear whether the iterates will stay smooth. A naive application of
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Picard-Lindelof iteration might then spend a lot of time in the early iterations,
because any local error estimator would require tiny steps compared with the
smoothness of the limit function.

We present here a model analysis of the smoothness of the iterates xJ,
following Nevanlinna (1989a). We assume that the iterates x3 are computed
exactly from

Mxj+1 = Nxj + f, (5.17)

but we measure the 'cost of integration' as if we were using high quality
software, based on first-order local error estimation: at time t the time step
h = h(t) would satisfy

h(t)\x^(t)\ = ej. (5.18)

This corresponds to the criterion of error per unit step; calculation for cri-
terion of error per step is analogous.

Thus the relevant measure for the cost or for the total number of time points
is proportional to ^ ^- / |xJ'|. An efficient implementation of Picard-Lindelof
iteration would gradually decrease the tolerance ej. Here we shall not discuss
the choice of e but focus on estimating / |xJ'|.

We put T = 1 and assume that x is so smooth that it can be represented
as a convergent power series

z(t) = ]TYzi. (5.19)

Since we are interested in the second derivatives, we measure smoothness on
the window [0,1] by

»(* - l)|xi|. (5-20)
i=2

If e1 := x — x3 denotes the iteration error, then

e>+1 + Mej+1 = Nej, ej(0) = 0. (5.21)

Introducing

k(t) := e~tMN,

and setting

k*j = k*k<j~l\

we have

ej = k*j * (x - xQ). (5.22)
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Substituting (5.19) into (5.22) yields

and hence

e>(t) = k*]{t)xi + 5^i(z - 1) / (« - sy-2k*3(s)xids. (5.24)
i=2 ^°

In order to estimate this we introduce the following bound:

/•l

C := sup sup / \k*3(s)a\ds. (5.25)
j |o |=l -/O

\a\

Theorem 22 We have

(5.26)

Furthermore, for any given splitting M, N there exists XQ ^ 0 and / such that
x(t) = (1 + t)xo, x = 0 and for some j ,

f1
/

Jo
(5.27)

Proof. The definition of C immediately gives (5.26). Since / \k*3'\ tends to
zero and a in (5.25) runs over a compact set, there exist an integer j and a
unit vector x$ such that

C= f \k*j(s)x0\ds.
Jo

Jo

If f(t) = XQ + (1 + t)AxQ then x(t) — (1 + t)xo is the solution of (5.16). Since
^l — XQ, and e3 = —x3, we obtain

1̂ 1 = C = C\\x - xo\\.
Jo

from (5.24). O

We conclude from Theorem 22 that the important quantity / \xJ'\ stays small
for smooth limit functions x if and only if C is of moderate size.

It is important to note that, even if C is of moderate size, the smallest 'steps'
can be very small, since we may have supj01] \x

3'\ 3> C, while /0 \x3\ < C.
Nevanlinna (1989a) contains an example of this.

Recall from Section 2 (proof of Theorem 5) that if

\K{z)\ < B R e z > 7 ,
Re z — 7

then we obtain a bound for the norms of the iterated kernels and hence the
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upper bound:

C < e 7 d m a x ( — V .
i 3

6. Periodic problems

We discuss briefly the iterative solution for periodic problems. We shall see
that the speed of the basic iteration is related to the speed of the 'corres-
ponding' initial value problem in the infinite window, while the speed after
optimal Krylov acceleration is related to the speed obtained for initial value
problems on the finite window.

6.1. The problem and the iteration operator

Consider solving the periodic boundary value problem

x + Ax = f, x(0) = x(T), (6.1)

when / is a continuous function of period T. Splitting A = M — N as usual
leads to an iteration of the form

xk = Txk~x + g (6.2)

provided the solvability condition holds:

^P <£ o{-M) for all n£Z. (6.3)

Here the integral operator T can be written in convolution form

rT

Fx(t)= ip(t - s)x(s) ds, (6.4)
Jo

where the kernel tp is periodic and

For more details, see Vandewalle (1992).

6.2. Spectrum and consequences

Computation of the Fourier coefficients of <p gives <p(n) = K^QjP-), where
K(z) = (z + M)~^N is the symbol of the Volterra operator K. This leads to
the following result.

Theorem 23 (Vandewalle 1992) Let the solvability condition (6.3) hold.
Then T is a compact operator in C[0, T] with the spectrum

^ , (6.5)
nez
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and spectral radius

(6.6)

Corollary 10 Assume that eigenvalues of M have positive real parts. Then

(6.7)

Proof. Here T is considered in C[0, T] while K is considered on the infinite
window (any space X of Section 3). The first inequality is immediately
verified because

^ )) = p{K).

The second inequality follows from the fact that the boundary da{K) is locally
analytic at points A € cr(̂ C) where |A| = p(fC)', see Proposition 2 in Nevanlinna
(1990a). Sampling this with density O(T~l) provides the maximum within
tolerance O(T~2). O

Observe in particular that even if the solvability condition holds (and in par-
ticular it holds for all T if M has eigenvalues of positive real parts) we can
have p(J~) > 1, so that the iteration would diverge. However, Krylov accel-
eration would always work.

Corollary 11 Let the local solvability condition (6.3) hold and suppose
1 $ cr(-?r)- Then the optimal reduction factor vanishes: ^(J7) = 0.

Proof. Since o~{J~) is countable, it is of zero capacity, and the claim follows
from Theorem 11 in Section 4.1. •

Since r)(F) = 0, we consider the superlinear decay of 6n(Jr). Again the
answer can be related to the corresponding initial value problem. Namely,
Piirila (1993) has shown that the order of decay for bn{!F) equals that of
|/Cn|x, that is, if R(X, K) is of order u>, then

.. nlogn
limsup -—;—-—r-=rr = u.P log(l/6(^))

7. A case study: linear RC-circuits
Linear RC circuits can be modelled in several ways. The sparse tableau model
contains all the equations governing a circuit and results in a large DAE sys-
tem. Nodal formulation results in a substantially smaller system and then
equations are written for nodal voltages with the aid of so-called stamps.
Using nodal formulation it was already shown in the earliest waveform relax-
ation paper of Lelarasmee et al. (1982) that waveform relaxation converges if
the cutting is done only across such capacitors that there is a path connecting
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them to the ground involving only capacitors. A simple model problem where
splitting is done across a capacitor not obeying this rule was considered by
Miekkala, Nevanlinna and Ruehli (1990), showing that in this case waveform
relaxation still converges, but convergence is sublinear. This result can be
generalized to all splittings of linear RC circuits, waveform relaxation always
converges, but convergence may be slow, like O(k~r), where k is the iteration
index and r a small number. This result was proved by Nevanlinna (1991).

We consider here as a case study applying waveform relaxation for the
sparse tableau formulation of linear RC circuits, following closely the treat-
ment of Leimkuhler, Miekkala and Nevanlinna (1991). The system is a DAE
of index one or two. We describe a splitting strategy that allows us to break
the circuit into subcircuits only across resistors. This strategy leads to con-
vergence that is shown using mainly Laplace transforms.

7.1. RC-circuit equations

The system of equations for an RC-circuit is

/ Cvc \
0
0
0
0

\

0
0
0

0

0
-R
0
0

0
0
0
0

- / 0 \
0 AR

0 AE

0 Ac

0

vc \
IR

IE

0
0

E{t)
0

\ o

• (7-1)

The unknown vector contains voltages across capacitors (vc), currents through
resistors (ifl), voltage sources (i#) and capacitors (ic), ajid nodal voltages
(VN). The matrices in (7.1) satisfy

R : a positive, diagonal UR X UR matrix;

C : a positive, diagonal nc x nc matrix;

AR : an UR X ./V incidence matrix;

AE '• an HE x ./V incidence matrix;

Ac '• an nc x TV incidence matrix.

Here an incidence matrix is a matrix whose elements belong to the set
{ — 1,0,1} and whose rows contain either two nonzeros {l, — 1} or one nonzero.
The usual definition does not allow the latter case, which arises because we
have eliminated the ground node from the circuit (which is a directed graph).
So ./V is the number of nodes in the circuit after a reference (ground) node
has been fixed and TIR, nc and n£ are the number of resistors, capacitors
and voltage sources in the circuit, respectively. The appropriate sizes of the
variable vectors should be apparent.
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The problem is well posed if

> TV + 1 and

has full rank. (7.2)

Another basic assumption is that

AE has linearly independent rows. (7.3)

This only means that there cannot be two voltage sources in parallel.

Proposition 6 Assume that assumptions (7.2) and (7.3) hold. Then the
DAE (7.1) has index one if

1 has linearly independent rows.

Otherwise it has index two.

Index two occurs if there are loops containing only capacitors and voltage
sources. For the proof of the proposition and a discussion of the assumptions
(7.2) and (7.3) see Manke et al. (1979).

We discuss the initial conditions for (7.1) after applying the Laplace trans-
form to (7.1). The Laplace transform x of x is given by x(z) — /0°° e~ztx{t)dt.
The transformed system becomes

zCvc = ic + Cvc(0),

RiR = ARvN,

AEVN = E, (7.4)

vc = ACVN,

and ARiji + AE%E + AQ%C = 0.

Eliminating iR, vc and ic gives

iT
E AIR^AR + ZAICAC J { vl J = { AlCAcvN(0) ) ' (7'5)

where we have used vc(0) = ACVN(0). Equation (7.5) can be solved for

I ^E if the coefficient matrix is nonsingular. This can be shown by an\vN J
indirect proof (Leimkuhler et al. 1991) for Rez > 0 and z ^ 0. If z = 0,
(7.5) can still be solved if

( . j has linearly independent columns. (7.6)
V "-E J
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When solving the Laplace-transformed system (7.4), we find that if the trans-
form of the input function E stays bounded as z grows, then vc, IR, IE, ic
and vpf are also bounded, if we have an index one DAE system. However,
if index two occurs, then some components of ic and IE may grow linearly
with z even when E is bounded (Leimkuhler et al. 1991).

Now let us discuss the initial values for (7.1). The form of the equation
suggests that one can assign arbitrary initial values to the state variables vct •
However, if we study the Laplace transform of (7.1) we see from (7.5) that
one may as well assume arbitrary initial values for all nodal voltages VNt.
Not all of them will have any effect on the solution but only ACVN(0), that
is, those WjVi(O) corresponding to nodes adjacent to capacitors. Notice that
although the solution for v^ is continuous for any initial values VN(0) there
will, in general, be a discontinuity in the time domain solution because at
t > 0 the algebraic equations in (7.1) determine v^(t), which may jump from
the arbitrary v^(0). If one wants to avoid this discontinuity at the initial
point, one should at least choose VN(0) consistent with E(0) by the third
equation of (7.1):

AEvN(0) = E(0).

Since AE has independent rows by (7.3), the number of independent initial
values that are used to obtain the solution of (7.5) is

r a n k
(AE\_
\Ac )

By Proposition 6, this equals nc for index one and, for index two, it is at
most nc-

The results motivate us to assume all the bounded components are in an
a-weighted L2 space, but the 'index two' variables lie in a larger space, say
Ya. As shown above, the index two variables consist of some components
of IE and ic- Since it is difficult to identify these particular components,
we assume all components of %E and ic are elements of Ya. The a-norm is
defined by

and the Ya-norm by

corresponding to the loss of one derivative. We may now take the space Xa

to consist of elements xT = (vQ i^ ig VQ vjf) where vc, IR and VN € Lf
and is and ic &Ya. The norm in Xa is defined by

\l + VR\1Ma = \vc\l + VR\1 + MY* + Mya +
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Remark 1 In the index one case we can simply take Xa = U^ for all
components of x, since the %E and ic have a special behaviour only in the index
two case. Then one should replace | • \ya in the preceding norm definition by

From the input function E(t) we assume

E E 1%. (7.7)

Theorem 24 Assume (7.2), (7.3) and (7.7). Then (7.1) has a unique solu-
tion in Xa for all a > 0.

Remark 2 In the classical treatment of DAEs, smoothness for the high
index variables is guaranteed by requiring the input function (E(t) in our
application) to have as many derivatives as needed.

7.2. Splittings

For large-scale circuits it is sometimes natural to write (7.1) in the permuted
form where the RC-circuit equations are repeated for each subcircuit. One
tries to choose the subcircuits in such a way that there are as few connections,
or couplings, to other subcircuits as possible. The resulting permuted form
of (7.1) will have a block structure

n o o \ / xi \ / • • •*

0
0 0

0

• ,

d
dt

I
where the coefficient matrix of x is still diagonal > 0 and the coefficient matrix
of x has nonzero elements mainly on its diagonal blocks, but also elsewhere
because of the couplings. We will show that if the subcircuits are chosen in
such a way that the subcircuits are coupled solely through resistors, then the
waveform relaxation method converges linearly. One should duplicate each
interface branch equation and assign the involved resistor current variable
to both subsystems connected through this branch. Applying dynamic block
Jacobi iteration to (7.8) after these modifications will always converge, as we
will show in the next section.

As mentioned above, our rule is that when splitting (7.1) we only cut
through resistors. So the equations that are possibly affected by this re-
laxation are those that contain IR:

-RiR + ARvN = 0

and AT
RiR + AT

EiE + AT
cic = 0.

For one specific resistor r̂  the first one is

- n%Ti + vki - vh = 0, (7.9)
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where r, is between the nodes k{ and Z,. If we cut through rj it is not obvious
to which subcircuit the above equation and variable iTi should be assigned. In
order to preserve symmetry in the flow of information between subcircuits, it
seems that both subcircuits should 'see' 7*j in the same way; this means (7.9)
should be assigned to both of them. To do that we have to duplicate equation
(7.9) and also the variable iri, in the sense that we associate equation (7.9)
with it to the first subcircuit and with i~ to the second:

-Tii+. + vki - vu = 0 and - ni~. + vki - vh = 0 (7.10)

The relaxation is now defined by the iteration we apply to all pairs of equations
involving 'cut resistors' as (7.10):

-r«i+* + t £ - t;*"1 = 0 and - r ^ + t;*"1 - «jj = 0. (7.11)

All components of the unknown x other than those V{ occurring in the 'cut
equations' (7.11) are treated at the new iteration index; thus the mentioned
Vi are the only coupling terms.

There is of course no duplication of the KCL equations: the number of nodes
does not change. The only change is that in the KCL equations corresponding
to the nodes fcj and U (refer to (7.11)) we must use i+ and i~, respectively.

Next we want to describe the splitting process in equation form.
Let LR be the set of indices of those resistors that are cut in the relaxation

process. Then the resistor current variable IR is modified so that each iri,
i € LR, is replaced by the pair of variables i£. and i~:

ip. = (in ...iri--- irnR)T ^ i R = (in • • • «£ \ t • • • V n H ) T for all i G LR.

Also, those rows (AR){. of the incidence matrix AR for which i is a member
of LR are duplicated, and the resulting new matrix AR is split in the way
suggested by (7.11)

AR = AM — AN,

where AN has nonzero elements only on the pairs of rows corresponding to
the duplicated equations. On those rows the splitting is

1 - 1 1 1 0

{
0 1

=: AM

If we modify the diagonal matrix of resistors R in the same way as iR, that
is

R = d i a g ( r i , . . . r{,... rnR) i-> R = d i a g ( r i , . . . n, ru ... rnR),
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then we obtain the iterative system

0
0
0

\ /

( 0
0
0

—/

0
-R

0
0

0
0
0
0

- /
0
0
0

o >
AM
AE

Ac

\ 0

vc \

\ VN

0

E(t)
0
0

(7.12)
with initial values vjy(O) = fjv(O). The first observation of (7.12) is that its
left-hand side has exactly the same symmetric structure as (7.1). In fact, if
we can show that assumption (7.2) holds when AR has been replaced by AM,
then we can immediately use the results of Section 7.1 to show that (7.12)
can be solved in Xa for a > 0.

The following lemma is proved in Leimkuhler et al. (1991).

Lemma 2

has full rank, then has full rank.

Let /C : Xa —> Xa be the iteration operator of equation (7.12), and let

xk = Kxk~l + ip. (7.13)

The Laplace transform of the iteration equation is then seen to be

~k _ x(z\rk'1 +(3

where

K(z) =

f Cz
0
0

- /

I 0

0
-R

0
0

AT
M

0
0
0
0

AT
E

-I
0
0
0

Al

0

AM
AE

Ac
0

\ - 1

AN

\

(7.14)

and ip is obvious from (7.12) because it does not depend on k.
The operator norm for /C induced by | • |Q is defined by

\fC\a = sup \JCx\a.
|x|«=l

By Lemma 1 and the preceding analysis we now obtain

Theorem 25 Assume (7.2) and (7.3) and apply the described splitting pro-
cess. Then \JC\a is finite for all positive a.
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1.3. Spectrum ofX

We can see from (7.12) that all the other components of x are in ker K, than
VN. If we define the projection operators

0 \ , . , / 0 \
VC

vN

0

\

and P
0

\

we can deduce that the nontrivial part of the spectrum <r(/C) is actually
a(VJCV), which can be computed as in Leimkuhler et al. (1991):

a{VKV) = c\ | J a{PK{z)P).
Rez>a

As in Section 7.1 the equation xk = K(z)xk~l can easily be manipulated
to yield

'it W ° R° W i A (7-i5)
Vk,r I \ 0 B- I ' -" L ' V 'N

N \ V N

where

BM = BC = and = AMR AN-

The solution of this equation clearly satisfies i)^ G Ker AE- Because of the
incidence matrix structure of AE (each row has at most two nonzero elements
±1) we can easily eliminate the iE and TIE components of VN from (7.15),
ending up with the equation

zBc)v
k
P = k \{BM (7.16)

where vp is a part of VN with N — TIE components.
The elimination described in Leimkuhler et al. (1991) is the same as 'short-

ing the edges' in graph theory: we short all edges containing voltage sources,
and simultaneously the nodes adjacent to these edges are pairwise combined.

The computation of the spectrum relies on the following properties of the
5-matrices. They are all symmetric, BN is nonnegative and BM and Be are
positive semidefinite matrices with nonpositive off-diagonal elements. These
facts imply that the splitting in iteration (7.16) is a regular splitting of the
matrix BM+ZBC — BN, if z G (0, oo). By the convergence theorem for regular
splittings, iteration (7.16) then converges for z G (0, oo), since BM+ZBC~BN
is a nonsingular M-matrix. The spectral radius P((BM+ZBC)~1BN) = r < 1
for z G R+, and, by the Perron-Frobenius theorem, r is also an eigenvalue.
For nonreal z with Re z > 0, taking quadratic forms in the eigenvalue equation
provides

1 = XX,
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that is, following Leimkuhler et al. (1991),

_, 1.
Re — > inf

A |x|=i

Rezx*Bcx
\x*BNx\

The vector giving the minimum can be directly computed and is, of course,
an eigenvector, so that

\Re\\ > - > 1.
X r

This inequality can be restated as

where the negative sign is used for Re A > 0 and the positive sign for Re A < 0.
So the spectrum of PK(z)P lies in the closed circles of Figure 6 for Re 2 >
a > 0.

Theorem 26 Let a > 0. Assume (7.2), (7.3) and (7.7), and apply the
described splitting process that only allows cutting through resistors. Then
cr(/C) lies in the set T>a of Figure 6. In particular, p(IC) < 1 and the iteration
(7.12) converges in Xa.

1 Rez

Fig. 6.

As mentioned in Section 7.1, for those circuits satisfying (7.6), the Laplace
transform of (7.1) may also be boundedly solved for z = 0. Since

(7.6) implies i-M has linearly independent columns,

this means that (7.12) can also be solved in the space XQ without exponential
weighting. In particular, for an index one system, /C is a continuous operator
in the ordinary L2-space.
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Theorem 27 Assume (7.2), (7.3), (7.6) and (7.7), and apply the described
splitting process that only allows cutting through resistors. Then K. is con-
tinuous in XQ and p(/C) < 1, that is, the iteration (7.12) converges in Xo-

As stated in the beginning of Section 7.2 we can always permute the circuit
equations and variables to a block form, where the blocks correspond to dif-
ferent subsystems. In that formulation, our iteration scheme is dynamic block
Jacobi iteration and the corresponding iteration matrix clearly has zero trace.
It has the same eigenvalues as PK(z)P defined by (7.12), so we deduce that
the trace of K(z) vanishes.
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